## PRESSURE MANAGEMENT AS A PART OF WATER DEMAND MANAGEMENT IN DRAKENSTEIN MUNICIPALITY



Presented by André Kowalewski

**Engineer: Water Services** 

13 July2012

## Introduction

- Between the years of 1989 and 1999 Drakenstein Municipality experienced an average water demand growth of 3.5% per annum
- Non Revenue Water was unacceptably high In excess of 33% (@ 1999)
- Static Pressure in the low laying areas were also unacceptably high [in excess of 9 bar (900kPa)]
- The total AADD of Paarl, which accounts for about 55% of the total population of Drakenstein Municipality, was in the vicinity of 17.9Mm<sup>3</sup>/annum<sup>(17 900 000 000 litres)</sup>



### Introduction (cont.)

- Goals of the Water Demand Management Scheme
  - Reduce the high percentage of non revenue water
  - ✓ Reduce the high static pressures
  - ✓ Reduce the high AADD value
  - To improve the total revenue collected by the Municipality
  - To provide a constant and efficient service to the consumer
  - To conserve water, which became a very scarce



# Methodology



## Methodology (cont.)

#### Total Population = 224 240

- Paarl = 138 650
- Annual Water Demand Paarl:
  - Prior Implementation of WDMS = 17 900Ml per annum
  - Post Implementation of WDMS = 11 500 Ml per annum
- Demand per capita = 250 litres/person/day
- Drakenstein Water Sources
  - Paarl Mountain (10%)
  - City of Cape Town (90%)



## Methodology (cont.)

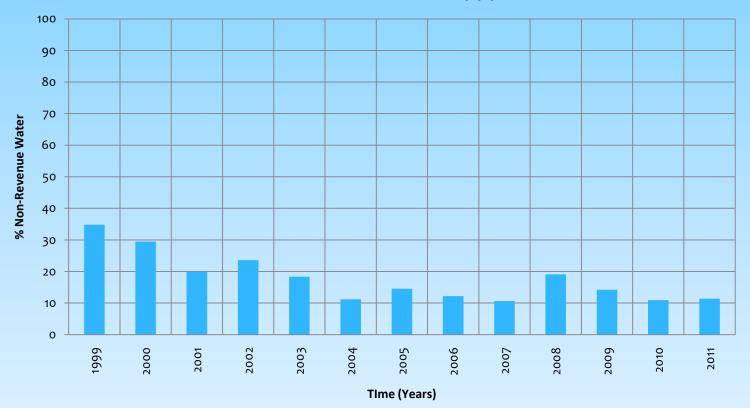
- Project Methodology and Design
  - Hydraulic modelling of master plan for reticulation network
  - Rising block tariff structure
  - Increased public awareness
  - Metering of all unmetered water metres
  - Promotion of water saving devices
  - Refurbishment/Replacement of network infrastructure
  - Leak Detection /Repair

#### Pressure Management

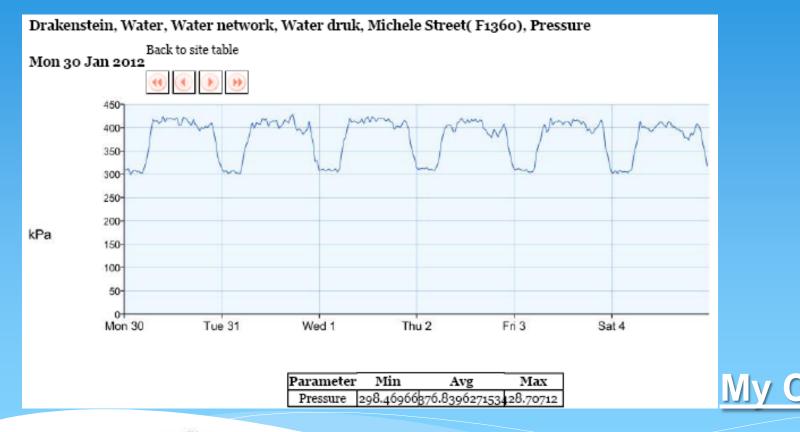


## Methodology (cont.)

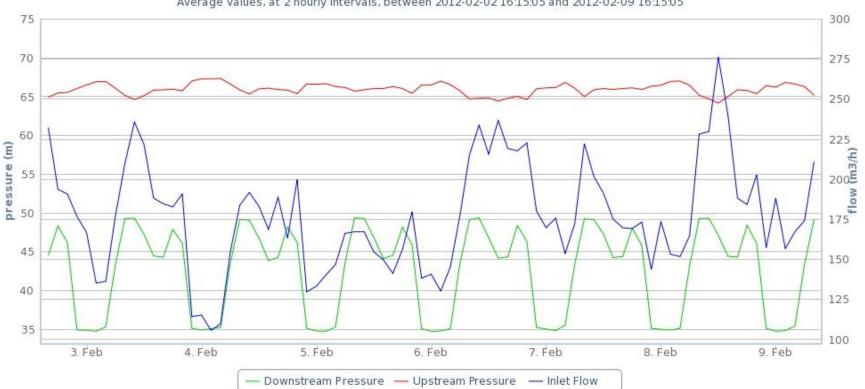
#### Pressure Management


- Water network consists of four pressure zones namely Main Road pressure zone, Central pressure zone, Leliefontein pressure zone and Denneburg pressure zone
- The water network consists of 7 pressure reducing valves ranging from 100mm Ø to 300mm Ø with electronic controllers
- Flow Modulation (Auto-watt & Modulo), Time Modulation (Auto-Watt & Modulo) and Loop Control (Regulo/Cello)
- Various monitored pressure loggers at critical points
- Controlling pressures during different times of the day, keeping lowest pressure at night when demands are lowest
- Cost of implementation of pressure management system R2.6 Million
  (only during 2000/2001)




#### Results

|                                                                              | Denneburg<br>Pressure Zone | Klein Drakenstein<br>Pressure Zone | Van der Stel Pressure<br>Zone |
|------------------------------------------------------------------------------|----------------------------|------------------------------------|-------------------------------|
| Average Inlet Pressure                                                       | 6.10 Bar                   | 6.80 Bar                           | 8.50 Bar                      |
| Average Outlet Pressure during<br>Low Demand Periods                         | 3.30 Bar                   | 2.60 Bar                           | 3.60 Bar                      |
| Decrease in Inlet pressure<br>During Low Demand Periods                      | 45.90%                     | 61.80%                             | 57.40%                        |
| Average Outlet Pressure during<br>High Demand Periods                        | 4.50 Bar                   | 3.70 Bar                           | 4.70 Bar                      |
| Decrease Inlet pressure During<br>High Demand Periods                        | 26.20%                     | 45.60%                             | 44.70%                        |
| Average Pressure at Critical<br>Point During Low Demand<br>Periods (Summer)  | 3.05 Bar                   | 5.84 Bar                           | 2.31 Bar                      |
| Average Pressure at Critical<br>Point During High Demand<br>Periods (Summer) | 4.25 Bar                   | 7.02 Bar                           | 1.8 Bar                       |
| Average Pressure at Critical<br>Point During Low Demand<br>Periods (Winter)  | 3.15 Bar                   | 6.2 Bar                            | 3.64 Bar                      |
| Average Pressure at Critical<br>Point During High Demand<br>Periods (Winter) | 4.31 Bar                   | 7.24 Bar                           | 3.31 Bar                      |
| Total Consumption of Pressure<br>Zone (Summer)                               | 715.6 m <sup>3/d</sup>     | 3562 m <sup>3/d</sup>              | 4296.07m <sup>3/d</sup>       |
| Total Consumption of Pressure<br>Zone (Winter)                               | 606.2 m <sup>3/d</sup>     | 3239 m <sup>3/d</sup>              | 4137.12 m <sup>3/d</sup>      |


#### Paarl Non-Revenue Water 1999 - 2011











Average values, at 2 hourly intervals, between 2012-02-02 16:15:05 and 2012-02-09 16:15:05

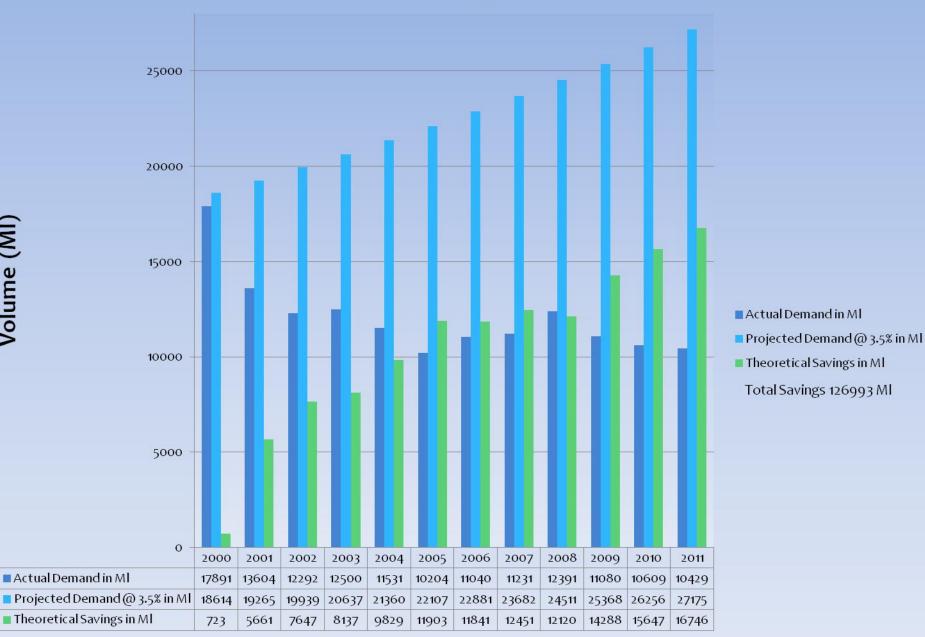
Generated on 2012-02-09 @ 16:33:56 by ZEDNET, Copyright

Zednet



Paarl Water Demand 1959 - 2011

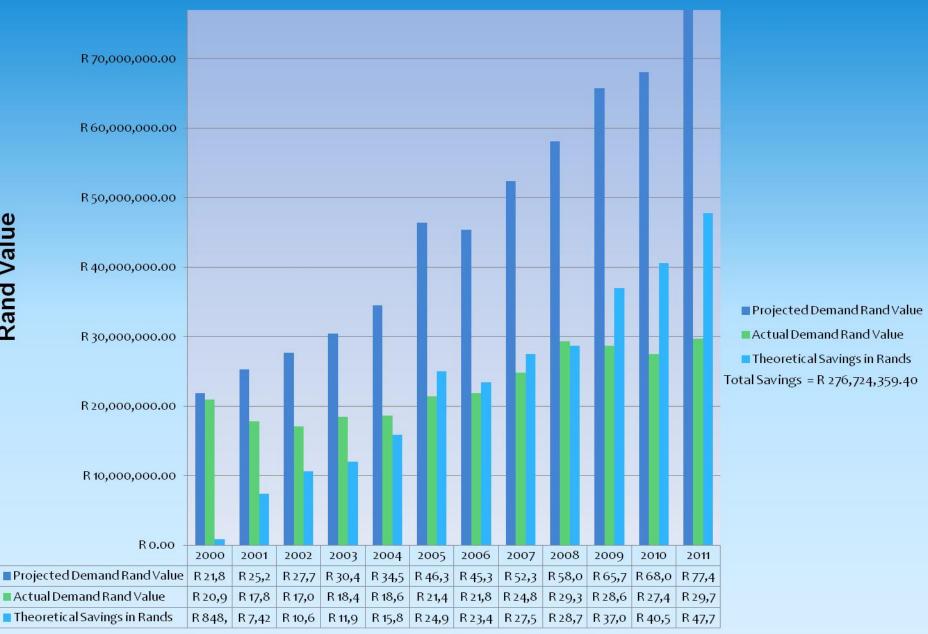





Paarl Water Demand 1989 to 2011






#### **Theoretical Savings in Volume**



Volume (MI)

Year

#### **Theoretical Savings in Rands**



Rand Value

Year

#### Way Forward

- Ongoing and Planned Projects
  - Upgrading and replacement of water network: Paarl, Wellington, Mbekweni, Gouda and Saron.
  - Upgrading of 450mm Bulk water supply pipeline at Saron
  - Construction of a WTP and Dam at Saron
  - Replacement of water pipeline from Withoogte Dam to Conmarine Reservoir
  - Construction and installation of a PRV stations and loggers at Wellington
  - Installation of water meters on unmetered industrial fire connections (Paarl & Wellington)
  - Upgrading of 350mm Ø pipeline between Bethel dam and Klipdam reservoir



#### Challenges

- Funding
- Vandalism of infrastructure
- Buy in from council and technical management
- Scaricity of technical & trained staff & also retaining them
- Choosing and isolating the different pressure zones
- Keeping these pressure zones isolated

























#### **Conclusions & Recommendations**

- A thorough desktop study of the areas were pressure management is to be implemented must be undertaken
- Modelling of the water network to be pressure managed is crucial
- Zones with different pressure value must be identified and be properly demarcated
- Logging of existing pressures and flows of different demarcated zones is important to give a clear indication of the activities of the zone
- Size and positioning of PRV need to be correct to achieve effective and efficient pressure control
- Different PRV control modulations yield different results for different zones
- Continuous maintenance and monitoring of pressure zones is important to continue saving water



#### Acknowledgements

- Mr. S Nkonyane (Senior Technician: Water Services ) who was/is in charge of the maintenance and management & installation of new pressure management systems.
- Drakenstein Municipality Council who approved, supported and financed the Pressure management part of the WDMS
- Raymond Vermeulen (4watersuppliers) for his advice and input in the installation and maintenance of the PRVs and Controllers



### **Thank You!**

