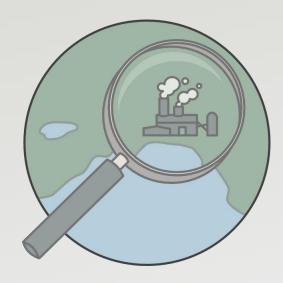


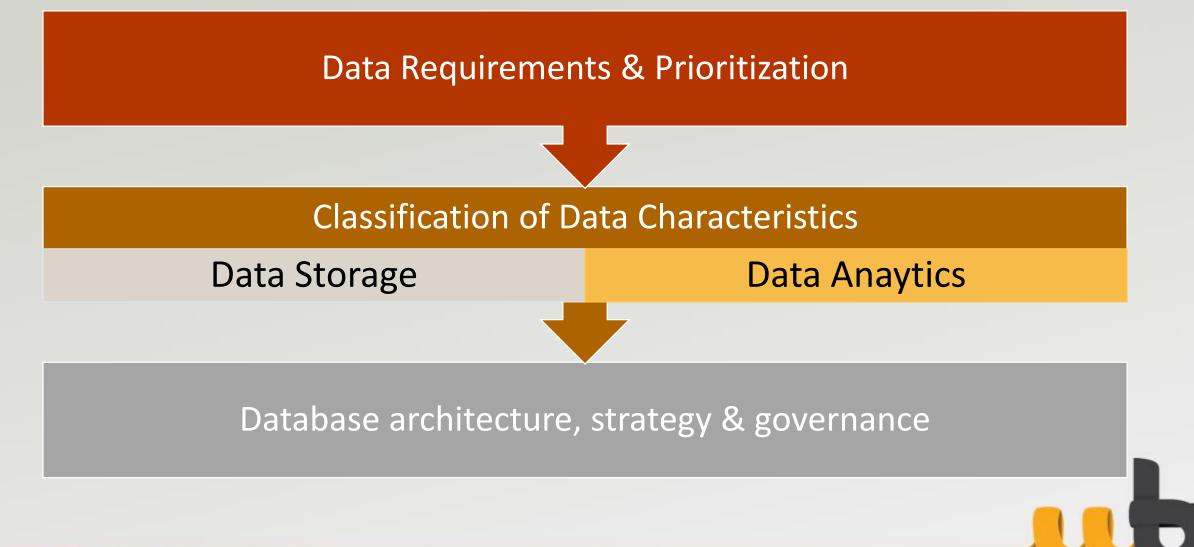
Leveraging on Data to enhance business operations

Problem Statement

Pressure mounting on South African municipalities to provide service deliveries within the boundaries of limited resources.


Key Challenges in Utility Environment

External Challenges such as slow economic growth, **non-payments**, **urbanisation**, **theft** and vandalism, political instability continue to dominate budget allocations


Internal inefficiencies – Employee costs, process inefficiencies, **data integrity, technology mismanagement**, high staff turnover adds to total losses.

What does data operations management strategy include and is it THE solution?

Database Operations Management Strategy

Database Operations Management Strategy (Contd.)

Data requirement and prioritization

• Profile, subscription, behavioural, interaction, market research data

Classification of Data

• Data segment, data storage, data latency, data lifespan

Data Storage

• Cloud based (private or public)

Data Analytics

- Improve decision making, saves costs, enhance business process etc.
- Input Layer- Action optimization- Service Delivery

Data Architecture

- Inter-relationship between business processes
- Governance =data assets are formally managed throughout the enterprise.

Challenges in implementation of data strategy

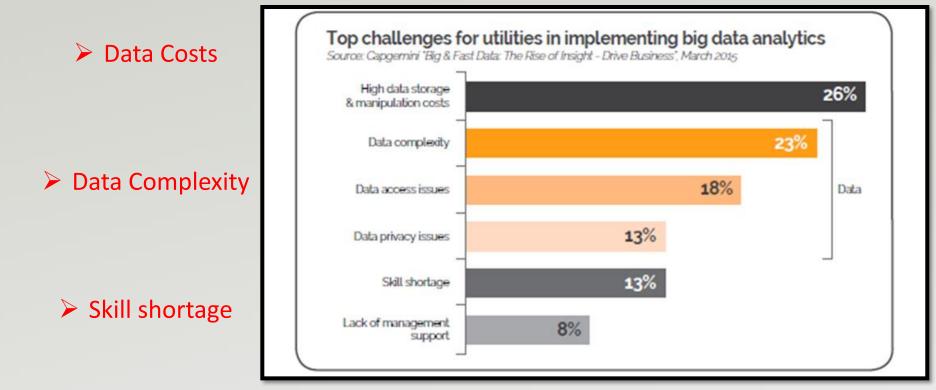
Lack of Supportive capabilities

Right Data

- Unable to Identify, combine, and manage multiple sources of data
- View & Analyse data from multiple sources
- IT support on legacy structures
- Identify problematic areas and define data needs
- Synchronize & merge data- prevent overlaps

Right Time

- Unable to shorten
 time period between
 data requested to
 actual receipt of data
- Unable to prevent delay in service requested to actual delivery of service
- Unable to identify frequency delays in the business process
- Unable to **prioritize data** opportunities


Right Skill

- Unable to **transform skills** within the organization
- Need to hire additional skill sets
- Lack of stakeholder engagement in development of tools & interfaces

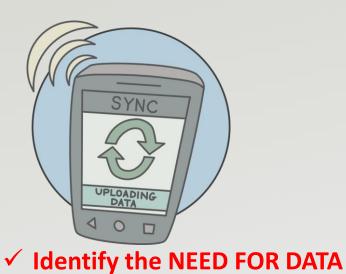
Decide & Act

- Unable to build analytics using data models
- Unable to discover, diagnose, predict and prescribe outcomes
- Lack of data driven decisions

Challenges in implementation of data strategy (contd.)

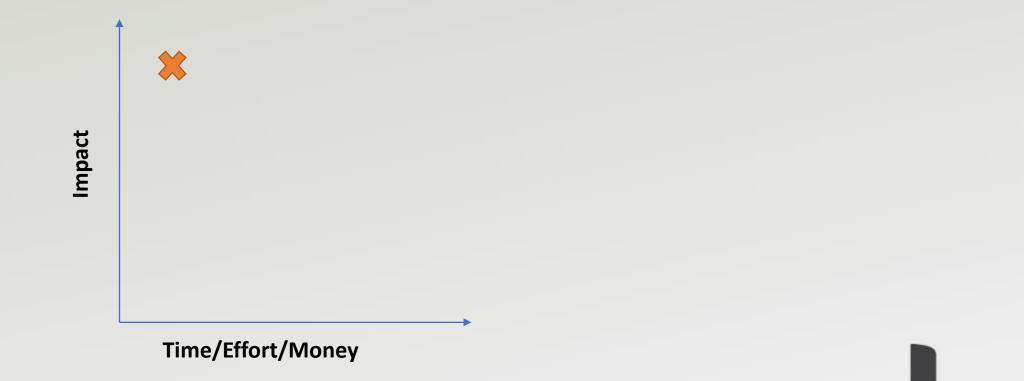
Source: - Capgemini "Big & fast Data: The Real Insight – Drive Business March 2015

How can utilities leverage on data to improve efficiency & enhance business operations?



Identify NEED to define your WANT

✓ Higher Revenue



Focus on critical areas of revenue generation

Adopt a quick win approach

High Impact and low on time/effort and most importantly money.

Case Study: - Minimising revenue leakages in utilities

Incorrect

Bill

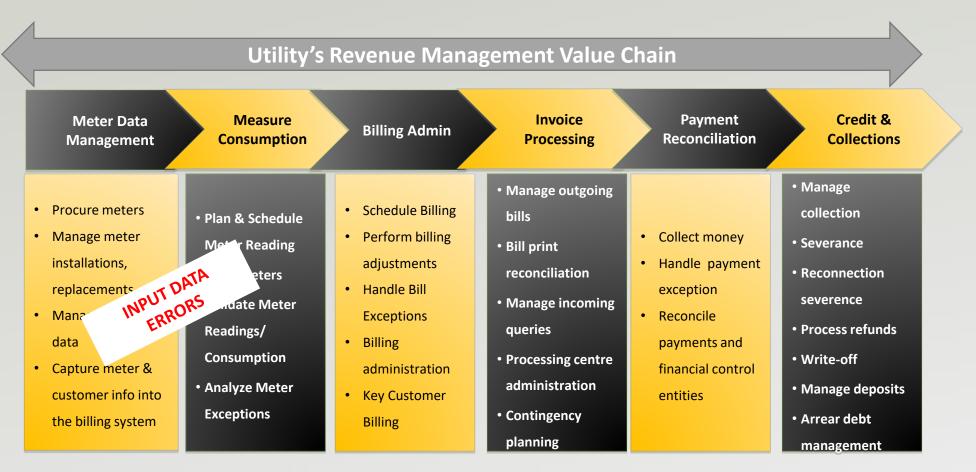
Amount

Non-technical loss due to in-accurate meter reads

Single Phase 60A Residential Conventional						
		Meter				
		Number		Reading	Physical	
Account Number	Meter Number	Found	Reading Date	(Kwh)	Address	QC Status
200200000	CCCC60000	CCCC60000	2018/01/20	61621,00	XXX	Accepted
200200000	CCCC60000	CCCC60000	2018/02/19	61814,00	XXX	Accepted
200200000	CCCC60000	CCCC60000	2018/03	619648,00	ХХХ	Accepted

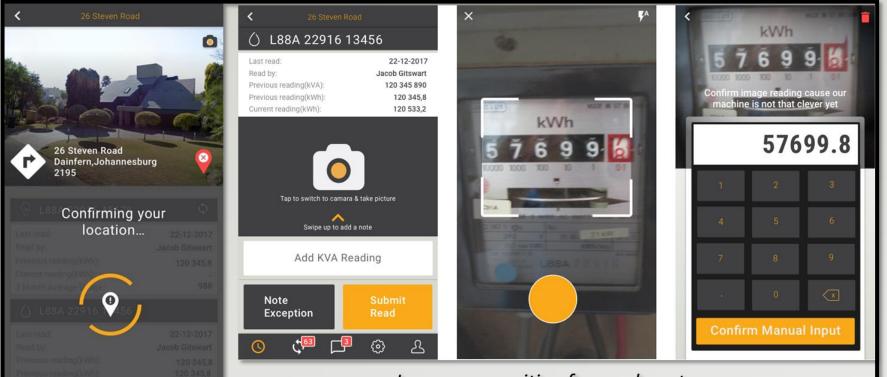
Domestic Meter Read Input data error: -Before decimal digits = 6 instead of 5

Based on 2017/18 tariff for Single phase 60A


Incorrect U	Jsage (in kW	557834 kWh		
	Max. Size	Usage	Tariff(c/kwh)	Amount (ZAR)
Block 1	500	500	110,65	553,25
Block 2	1000	500	126,98	634,9
Block 3	2000	1000	136,35	681,75
Block 4	3000	1000	143,86	719,3
Block 5	300000	554834	150,91	754,55
Sub-total				3343,75
DSM Levy (c/kwh)			2	11146,68
Service Charge				114,57
Capacity Charge			337,52	
Total charge for the month		X	R14 942,52	
Average Tariff (c/kwh)				0,03

Based on 2017/18 tariff for Single phase 60A

Correct Us	134 kWh			
	Max. Size	Usage	Tariff(c/kwh)	Amount (ZAR)
Block 1	500	134	110,65	148,271
Block 2	1000		126,98	
Block 3	2000		136,35	
Block 4	3000		143,86	
Block 5	300000		150,91	
Sub-total				148,271
DSM Levy (c/kwh)			2	
Service Charge				114,57
Capacity Charge				337,52
Total charge for the month			R600,36	
Average Tariff (c/kwh)				4,48

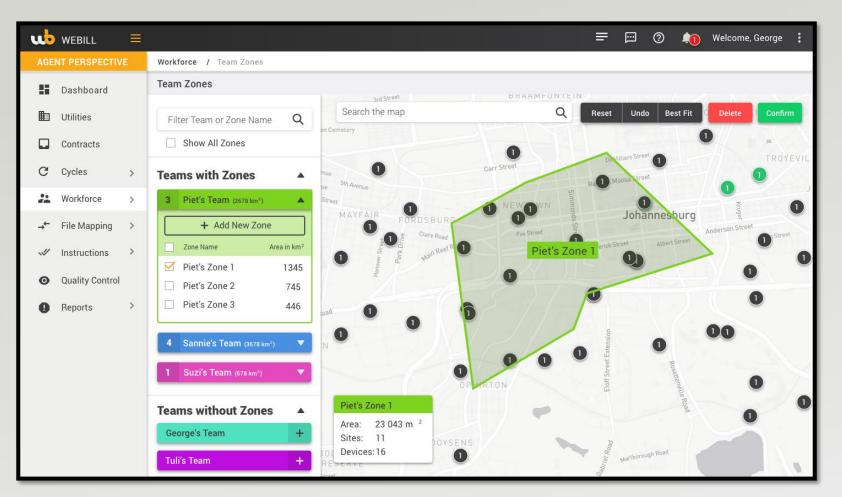

Correct Bill Amount

Case study: - Background

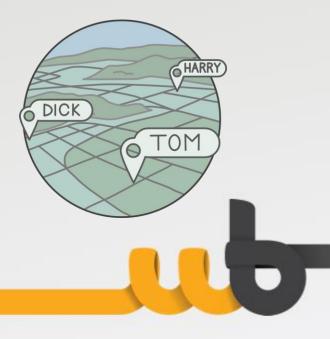
- ✓ Utility's operating cost increased by almost 11% year on year from 2014 to 2017.
- ✓ In contrast revenue increased by ~ 6%.
- ✓ Key initiatives were required to curb further revenue loss.

Step 1: - Used a cloud based tools to capture correct consumption data

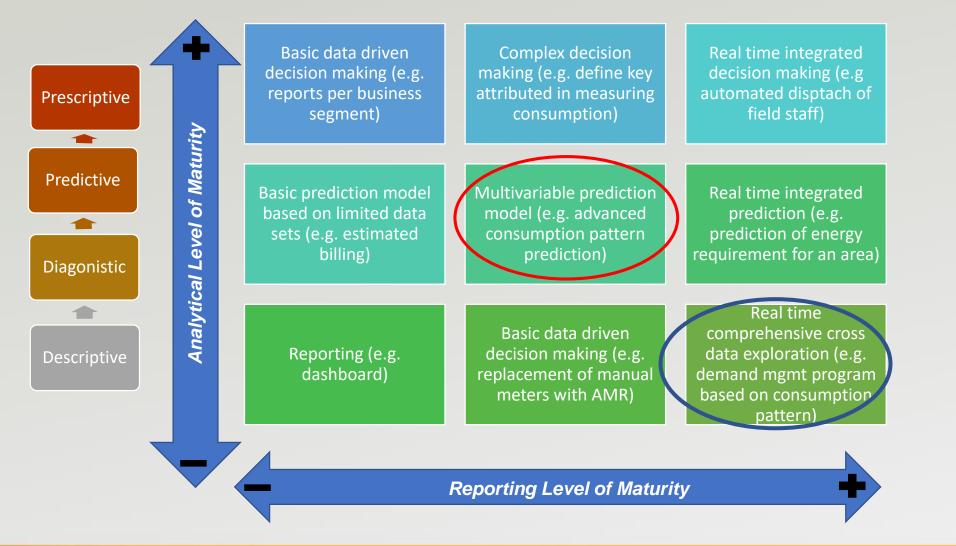
Auto-confirmation of GPS location


Image recognition for read capture

Built in QA checks;


✓ Image capturing data input validation

✓ Location validation


Step 2: - Efficient Workforce Management

- ✓ Effective workforce management by allocating areas for each team.
- Location check QA enabled to capture correct GPS co-ordinates for each site.

Step 3: - Data Usage - Multi-variable data analytics to define estimation model

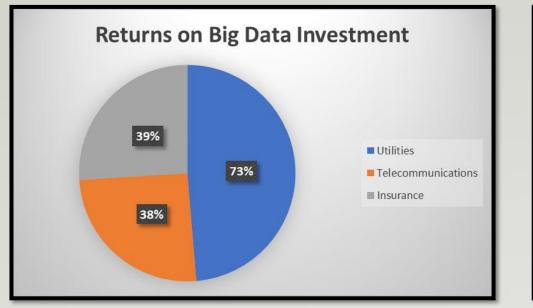
Step 4: - Data Analytics - Estimation model variables for predicting consumption pattern of consumers

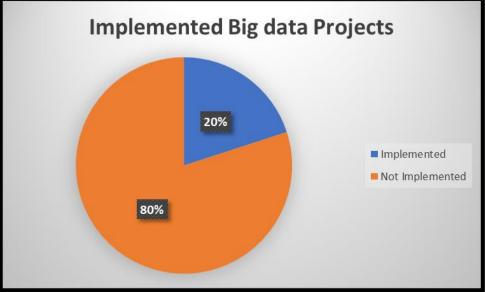
Variable	Old Model	New Model
Location	\bigcirc	
Average Reads	<u> </u>	
Weather	<u> </u>	
Month of the year	<u> </u>	
Peak and off-peak period consumption pattern		\bigcirc
Leaks		•
Size of the property		\bigcirc
Type of measuring device (manual, smart)		<u> </u>
Energy type (solar, coal, gas etc)		\bigcirc
Utility Pricing		<u> </u>
Customer demographics		

Data Analytics – to predict consumption pattern

Key benefits;

- ✓ Accuracy in consumption pattern predictions
- ✓ Accuracy in **billing** calculation
- ✓ Enables forecasting utility demand
- ✓ Improves service delivery
- Enables development of demand side management programs


Overall cost reductions, improving data reliability and promoting customer engagement


Case Study 2: - Analytics for Outage Management Process

Variable	Old Model	New Model	Data Analytics to improve outage response time
Equipment type			Adding GPS Location data for service fleet;
Region	•		 ✓ Schedule & dispatch service fleet to correct
Weather	<u> </u>		location
Repair status	<u> </u>		 Improved outage response time
Spread of outage			
Hour of day			Linking Customer complaints data;
Customers affected		<u> </u>	 Able to identify areas experiencing maximum
Day of week			outages, their frequency and response time
Concurrent incidents		<u> </u>	 Be able to predict expected restoration time (ETR) for customers more accurately
Month of year		<u> </u>	(LTR) for customers more accurately
Type of faults		<u> </u>	Overall cost reductions, improving data reliability
Frequency of outages			and promoting customer engagement
Area most impacted		<u> </u>	
Supply segments for the area			
Location of outage management fleet (GPS)			
Source of power supply/ distribution to the area		<u> </u>	

Conclusion

Utilities have wealth of data and aware of returns on big data investments.

PWC Survey Results;

- ✓ 87% of SA companies plan to introduce **new digital products** and data- based services over the next five years;
- ✓ 83% of SA respondents expect data analytics will have a significant influence on their decision-making processes in five years' time;
- ✓ Only 10% of local respondents rate the **maturity of their data analytics capabilities** as advanced.
- ✓ In South Africa, the current level of digitization and integration is expected to rise from 27% to 64% within the next five years.

Thank You!!!!

