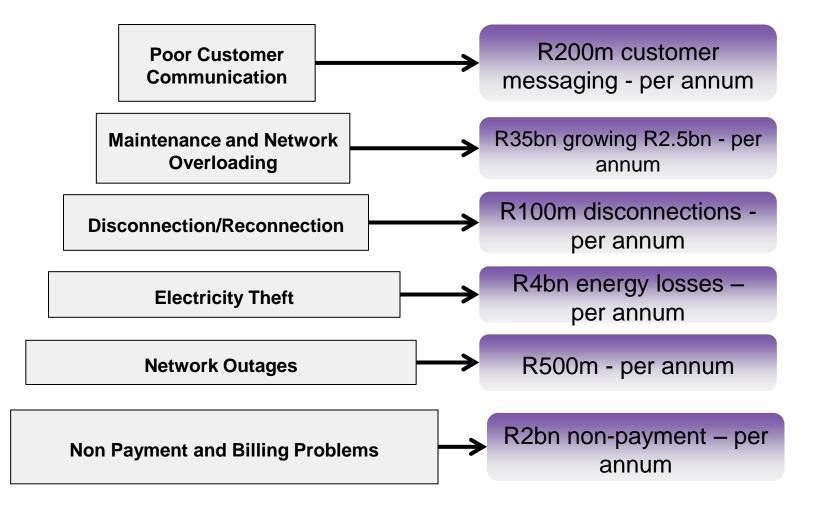
Low Voltage Smart Grid System Enables Near Real Time Energy Balancing as a Tool for Detecting and Managing Energy Losses

Jan Olwagen Senior Engineer Utillabs (Pty) Ltd South Africa

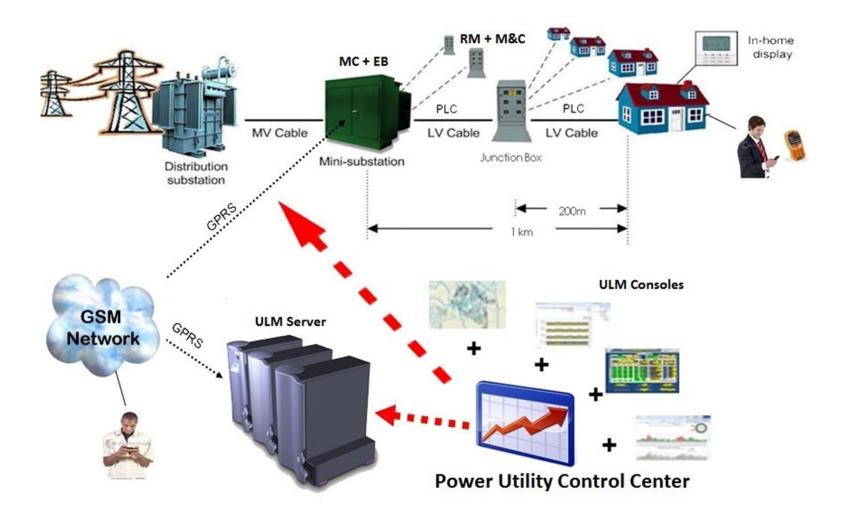
Overview

- Utility Challenges
- Brief Description of the Low Voltage Smart System (LVSS)
- LVSS Utility Solutions- Focusing Specifically on Energy Balancing and Revenue Protection
- Requirements for an Effective Energy Balancing System
- Energy Balancing for Revenue Protection and social engineering
- Conclusion

What is driving the evolution to the smart grid?


The old problem of supply and demand in balance in real time made more complex by:

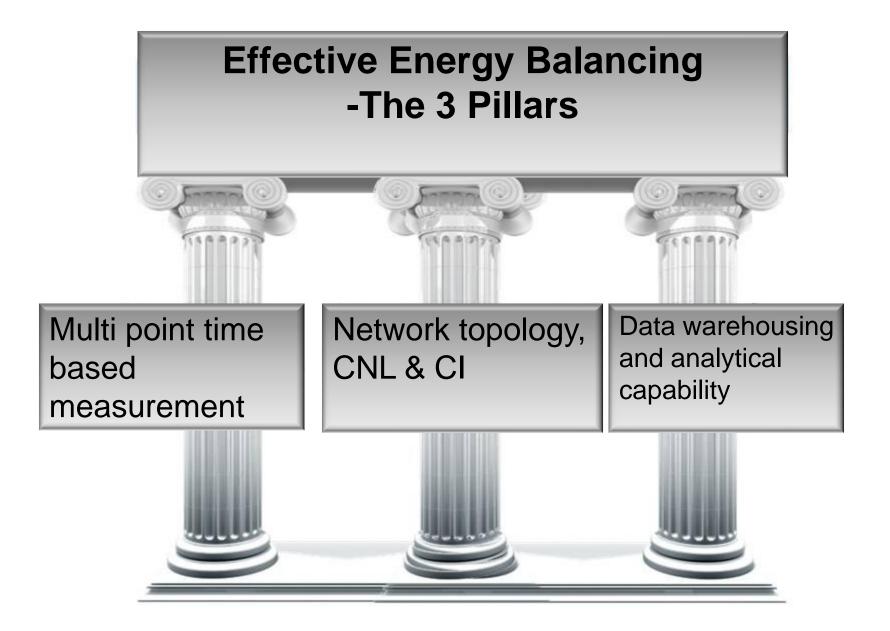
- The influence distributed and renewable generation and storage
- The influence of more aware and connected clients
- Economic influence of the cost of supply and wide area grid management


Why get involved

- Enel Large percentage of Italian homes covered, 4 year payback period and happy customers paying less
- Enel Isneria project and GRID4EU for distributed generation control

Power Utility Challenges

LVSS



LVSS Utility Solutions- focusing specifically on Energy Balancing and Revenue Protection

- Energy management
 - Active auditing
 - Remote connect and disconnect
 - Revenue protection works management
 - Social engineering evaluation tool
- Business efficiency
 - Reduce energy losses
 - Improve credit management and billing
 - Improved meter reading
 - Direct communication with customer

Energy Balancing & Revenue Protection

- Balancing the energy Supplied <u>vs.</u>
 Consumed a simple idea
- Energy Loss Detection: Ability to track bypassing and to have the advantage of speed to reduce financial impact
- Revenue Loss Detection: Ability to see if energy sold through meters below an energy balancing node ties with the energy flowing through the point

Pillar 1: Time based measurements

- The meter and the metering system must be capable of reasonably fine grained energy profile measurement
- Measurement accuracy must be of class 1 or class 2
- Real Time Clocks (RTC) are required on the measurement units, with methods of synchronizing the system time to a reasonable accuracy
- Meters that can detect either relative or preferably absolute phase that they are connected to are a distinct advantage

Pillar 2: Network Topology

- The meter configuration must be held locally and communicated and kept centrally
- Any change to the configuration that effects EB must be automatically updated and communicated to the central data store
- It is important to gather as much geographic and electric information as practical at roll out

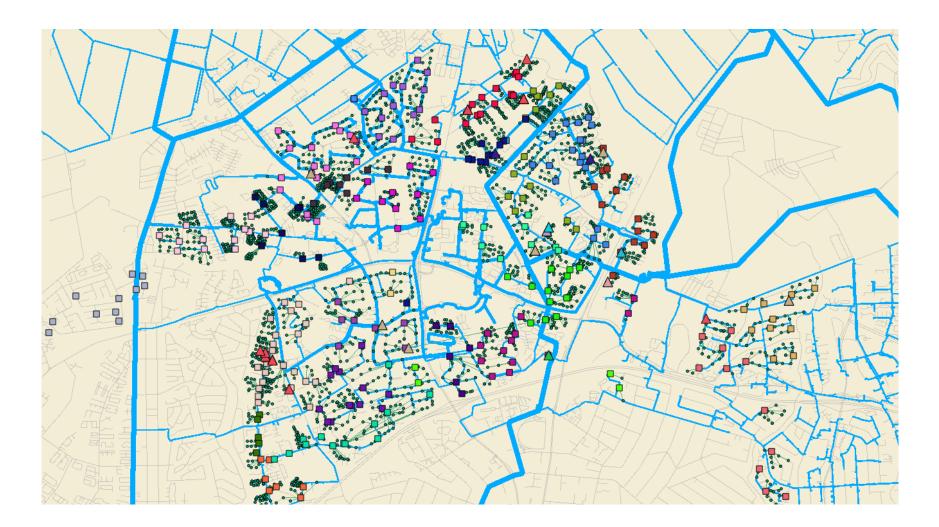
Pillar 3:

Data warehousing and analytics

- Readings need to be stored in a space-efficient manner and indexed for efficient querying
- The configuration snapshot information must be stored efficiently
- The results must be stored within reasonable space requirements and one must be able to query by node and query by time
- Auditing must be easy

Energy Balancer (EB) in the Roll of Revenue Protection Works Management

- Fully automated daily EB and automated report generation
- Quick assessment on the impact of any field work
- The size of the loss can now be used to focus on areas that will bring the most economic advantage
- Geographic information allows easier planning, better use of resources and avoiding duplication
- The capability to store and analyse large amounts of data enables comparative energy studies


EB in social engineering

- The assessment of social engineering campaigns
- Measuring the efficiency of campaigns according to the type of users
- Allowing tailored messages to be created by the social engineering team
- The effectiveness of a campaign can now be establish with reasonable certainty, possibly changing attitudes towards the social engineering aspect of revenue protection

Energy Balancing Console

2012-07-09 00:00	▼	-209kWh	-6.2%	31	29	39	30	-3644kWh	-3.8%	31	29	39	30	-3644kWh	-3.8%	31	south africajeskom(paulshof ssjruby)6000000004268 10040000035cb5f1	40010000672c70b	В	800:5	
2012-07-10 00:00		69kWh	2.5%	0	0	32	97	1382kWh	2.1%	0	0	32	97	1382kWh	2.1%	15	south africajeskom paulshof ss loerie 60000000052c7c6 10040000035d120d	40010000672b49f	W	800:5	
2012-07-10 00:00		48kWh	2.5%	0	0	14	115	1076kWh	2.6%	0	0	14	115	1076kWh	2.6%	10	south africajeskomjalbatros ssjelm(6000000004ff5b9)10040000035f8148	40010000672bd53	W	500:5	
2012-07-09 00:00		32kWh	1.5%	0	0	10	119	891kWh	1.5%	0	0	10	119	891kWh	1.5%	13	south africa eskom albatros ss albatros 6000000005477f7 10040000035e1254	400100006613fbc	W	500:5	
2012-07-09 00:00		23kWh	1.5%	0	0	16	113	749kWh	1.8%	0	0	16	113	749kWh	1.8%	11	south africa(eskom(albatros ss albatros)6000000005477f7 10040000035e1254	4001000066131c3	R	500:5	
2012-07-10 00:00		32kWh	0.7%	0	0	34	95	726kWh	0.6%	0	0	34	95	726kWh	0.6%	36	south africa(eskom)(fourways ss ann)6000000004fe1b6 10040000035dc39b	40010000672cffa	R	800:5	
2012-07-10 00:00		30kWh	1.6%	0	0	28	101	614kWh	1.5%	0	0	28	101	614kWh	1.5%	12	south africajeskom paulshof ss loerie 60000000052c7c6 10040000035d120d	40010000672c3ff	R	800:5	
2012-07-10 00:00		-20kWh	-0.6%	0	0	25	104	-486kWh	-0.6%	0	0	25	104	-486kWh	-0.6%	34	south africa eskom fourways ss ann 6000000004fe1b6 10040000035dc39b	40010000672bbdd	В	800:5	
2012-07-10 00:00		19kWh	1.4%	0	0	40	89	475kWh	1.5%	0	0	40	89	475kWh	1.5%	20	south africaleskom albatros ss albatros 600000000542bce 10040000035ca437	40010000672bf29	В	500:5	
2012-07-10 00:00		20kWh	1.1%	0	0	31	98	461kWh	1.0%	0	0	31	98	461kWh	1.0%	21	south africaleskom(albatros ss albatros)600000000542bce 10040000035ca437	40010000672b9a7	W	500:5	
2012-07-10 00:00		12kWh	0.9%	0	0	30	99	372kWh	1.0%	0	0	30	99	372kWh	1.0%	20	south africajeskomjalbatros ssjalbatrosj600000000542bcej10040000035ca437	40010000672cec7	R	500:5	
2012-07-09 00:00		3kWh	0.2%	0	0	13	116	145kWh	0.3%	0	0	13	116	145kWh	0.3%	8	south africajeskom(albatros ssjalbatros)600000000547777/10040000035e1254	40010000672ccbd	В	500:5	
2012-07-10 00:00		3kWh	0.1%	0	0	29	100	47kWh	0.1%	0	0	29	100	47kWh	0.1%	30	south africajeskomjfourways ssjannj6000000004fe1b6j10040000035dc39b	40010000672d7f0	W	800:5	
2012-07-10 00:00		3kWh	0.2%	0	0	16	113	6kWh	0.0%	0	0	16	113	6kWh	0.0%	11	south africa eskom paulshof ss koerie 60000000052c7c6 10040000035d120d	40010000672b211	В	800:5	
2012-07-10 00:00		-1kWh	-0.0%	0	0	13	116	-5kWh	-0.0%	0	0	13	116	-5kWh	-0.0%	10	south africa eskom albatros ss elm 6000000004ff5b9 10040000035f8148	40010000672d304	R	500:5	

GIS map with system alarms

Conclusion

- LVSS has proven to be stable whether an energy flow is in balance or out of balance
- The system has potential to be a tool for revenue protection and should be installed in areas where energy theft is suspected.

