

Engineering Consulting

Utility Management Consulting

Energy & Revenue Management

NETGroup Academy

Revenue Protection as part of Utility Financial Sustainability

By LPP Fourie (Pr Eng)

SARPA 29 July 2010

- Synopsis

'Revenue Protection is an integral part of a holistic approach to achieve utility financial sustainability. '

•Losses value chain & the quantification of losses, and integrated approach in minimising losses.

- •What efforts should management make to improve the business economics of the electricity utility?
- Benchmarking: What is happening elsewhere?

Agenda

- Introduction
- Losses value chain
- Losses Quantification
- Holistic approach to financial sustainability
- Gains for the utility from managing losses
- Conclusion

Introduction

- Financial sustainability what does it mean?
 - *Cash returns* from operations are *sufficient* to pay for all cash expenses

ning

equal to 1 or better

that affects east fib.s

Cash

- Cash coverage ra
- Integrated approac
 - Understanding
 - Maximise revenue
- Improve cash coller rability what does it mean?
 - Increase tauns
 - Minimise operational cost
 - Least cost generations h
 - Reduce overall losses losses
 - Increase operational efficiencies
 - Improve quality of supply

Together building world class utilities and industries

Determining Assumptions

Balancing Cash with Revenue

NETGroup

Losses reduction

Reduction in Technical Losses

- Reduce cost of generation and imports
- Normally reduces the most expensive generation if least cost generation strategy is followed

Reductions in Non Technical losses

- Will convert into additional sales
- Or will reduce the cost of additional generation if it cannot be converted into sales
- Or both

Revenue protection is all those utility activities that ensure that losses are minimised, both from a revenue and a cost perspective

- Energy in
- Technical losses
- Consumption
- Non technical losses
- Sales
- Cash collected

- Energy losses consists of
 - Technical losses
 - Non technical losses
- Technical losses is evident due to:
 - Network configuration and
 - Network loading
 - Consist of demand losses and energy losses
- Non technical losses is caused by:
 - Factors outside the electrical system,
 - This could include *inaccurate meters*,
 - Inaccurate meter readings,
 - Technical problems with meter installations,
 - Billing errors or errors in record keeping,
 - Consumption by non metered installations and
 - Energy theft
- Cash losses
 - Energy billed (sales) for which no payment has been received

NETGroup

- Overall efficiency benchmarks
 - AT&C
 - CC/EI
- Aggregate Technical and Commercial Losses (AT&C)
 - Aggregate of technical and cash losses
 - Measured in %
 - AT&C = 1 (1-Overall losses %) X Collection Efficiency%
- Cash collected per unit of energy in (CC/EI)
 - $\overline{}$ Is the ration between cash collected and energy in
 - Is given in c/kWh
 - This is normally compared with the average billing rate

Losses Quantification

- Needs to know the *components and quantum* of losses to decide on appropriate mitigation strategies
- Can easily determine overall energy losses
- Can calculate technical energy losses
- Derive non technical losses from the above
- For technical losses
 - Calculate demand losses
 - Calculate energy losses

Losses Quantification

Demand losses

- Have to obtain this from load flow studies
- Need to do it for all voltage levels
- Energy losses
 - Derived from demand losses and loss load factor (LLF)
 - Energy losses = MD loss in kW*LLF*hours in period
- Determining the Loss Load factor
 - From statistical metering
 - From the load factor (LF)
 - LF = Total Energy Available/(Maximum Demand in kW*hours in period)
 - The following formula shows how to derive the LLF from statistical metering

$$LLF = \sum_{n=1}^{35040} (\text{load}_n^2 / \text{peak load}^2) / 35,040$$

where:

35,040 load_n peak load = the number of 15 minute load recordings in one year
= the 15 minute average load in the nth 15 minute period.
= the highest 15 minute average load in the year

Losses Quantification

Determining the Loss Load factor

- From the load factor (LF)
- $LLF = k*LF+(1-k)*LF^{2}$
 - The factor k depends on the load profile, if no data is available, normally assumed as .3
- $k = (LLF-LF^{2})/(LF-LF^{2})$

	Residential	Residential Low Income	Commercial/ Residential	Commercial
LF	0.59	0.32	0.69	0.61
LLF	0.40	0.17	0.50	0.44
k	0.18	0.30	0.16	0.32

Typical Results

- Energy losses
 - Energy losses follow demand profile
 - Energy losses *increase* exponentially as load increases, therefore nullifies the
 - improvement in non technical losses
 - Energy losses are still high, and the technical losses depends a lot on the network configuration
 - Utility 1 a urban network, lots of cable, where as utility 2 includes a lot of rural networks

NETGroup

Typical Results

AT&C

NETGroup

- Shows the combine effect of technical and cash losses
- For Utility 2 one can see that mitigation strategies had a positive effect on cash losses helping AT&C to improve.
- For Utility 1 no mitigation strategies have been implemented yet

Typical results – Mitigation strategies

- Technical losses
 - Network Optimisation open points
 - Reduce overloading, especially transformers
 - Balancing of load
 - Ensure optimal voltage levels

- Non technical losses
 - Appropriate systems
 - Improved meter reading strategies
 - Meter installation audits
 - Appropriate disconnection and re-connection strategies
 - Organisational change to enhance revenue protection

Together building world class utilities and industries

VS

Holistic approach to financial sustainability

- Identify all activities affecting cash flow
- Understand and model the relationships accordingly (business economic model)
- Obtain relevant inputs from other modeling, like:
 - Loss quantification
 - Electrical Master plan
 - Business plan
 - Etc
- Scenario Planning
 - Mitigation Strategies
- Monitoring and Reporting framework
 - KPľs
 - Dashboard

Holistic approach to financial sustainability

Mitigation Strategies

- Reduce technical losses from 16 to 14 % and non technical losses from 5.5% to 2.5% ,
- Increase the collection efficiency from 93% to 97.5%,
- Collection of old debtors over a 3 year period,
- Increase in operational efficiency with 40% (measured in kWh per employee or number of customers per employee).
 - Additional step tariffs above inflationary tariffs
- Monitoring and reporting through appropriate KPI's

- Technical Loss reduction from 20% to 17%, non technical losses from 6% to 3%,
- Maintain collection efficiency,
- Convert expensive generation, and optimise generation mix,
- Restructuring of debt,

•

•

•

•

•

- Increase the quality of supply and reducing outages,
- Increase sales through electrification and large mining loads,
- Additional step tariffs in short term and
 - Overdraft to support short term cash deficit

Benefits from managing losses

- Technical loss reduction
 - Reduce the *cost of supply*, as this will reduce the cost of generation and imports
 - Will save on the *most expensive generation* in a least cost generation strategy
 - Network optimisation (optimal switching arrangements, balanced loading, optimal voltage levels) will not need capital investment (except if new switchgear is required to implement the optimal open points)
 - Network strengthening will require investment

Non Technical loss reduction

- Will either be converted into *additional sales*, or reduction in generation cost (same as for technical losses), or both
- Will *not need* huge *investments*, might increase short term operational expenses to implement the necessary strategies
- Will also encourage *efficient usage of electricity* as customers will pay for what they consume and tend to force average consumption down

Conclusion

- Revenue protection is part of a *holistic approach*
- Losses can be reduced through *tailored mitigation strategies*
- Management can get the utilities back to financial sustainability by implementing the *right strategies*
 - Monitoring and reporting
 - Loss quantification
 - Business economic modeling
 - Integrated planning
 - Charge *market related tariffs* by cutting out losses and inefficiencies

END

To measure is to know...

